

Energy – the U.S. and World – and **Carbon**...

Henry W. Brandhorst, Jr.

June 25, 2007

Space Research Institute

The World at Night

Space Research Institute

Global Energy Consumption

Auburn University

Space Research Institute

Space Research Institute

www.undp.org/seed/eap/activities/wea

Ref: Nate Lewis, 2005 Space Research Institute

Space Research Institute

- * Abundant, inexpensive resource base of fossil fuels exists
- * Renewables will not play a large role in primary power generation unless/until:
 - » Technological/cost breakthroughs are achieved, or
 - » Unpriced externalities are introduced (e.g. environmentally-driven carbon taxes

Carbon Sequestration

CO₂ Burial: Saline Reservoirs

Auburn University

130 Gt total U.S. sequestration potential Global emissions 6 Gt/yr in 2002 Test sequestration projects 2002-2004

Study Areas

DOE Vision & Goal: 1 Gt storage by 2025, 4 Gt by 2050

Potential of Renewable Energy

- Hydroelectric
- Geothermal
- Ocean/Tides
- Wind
- Biomass
- Solar

Globally

- Gross theoretical potential 4.6 TW
- Technically feasible potential
- Economically feasible potential
- Installed capacity in 1997 0.6 TW
- Production in 1997 0.3 TW

 \Box (can get to 80% capacity in some cases)

Source: WEA 2000

1.5 TW

0.9 TW

Geothermal Energy

Auburn University

1.3 GW capacity in 1985

Hydrothermal systems Hot dry rock (igneous systems) Normal geothermal heat (200 °C at 10 km depth)

Geothermal Energy Potential

Ocean Energy Potential

Auburn University

Isaacs, J.D., and W.R. Schmitt, 1980. "Ocean Energy: Forms an

Space Research Institute

Wind Electric Potential as a Percent of Contiguous U.S. 1990 Total Electric Consumption

Specifications: Wind Resource> Class 4 at 30m (>320W/m2), 30m hub height,

In 1999, U.S consumed 3.45 trillion kW-hr of Electricity = 0.39 TW

http://www.nrel.gov/wind/potential.html

Excluded Land Area: 100% Environmental, 100% Urban, 50% Forest, 30% Agricultural, 10% Range

- Significant potential in US Great Plains, inner Mongolia and northwest China
- U.S.:

Use 6% of land suitable for wind energy development; practical electrical generation potential of ≈ 0.5 TW

• Globally:

Theoretical: 27% of earth's land surface is class 3 (250-300 W/m² at 50 m) or greater If use entire area, electricity generation potential of 50 TW Practical: 2 TW electrical generation potential (4% utilization of \geq class 3 land area)

Off-shore potential is larger but must be close to grid to be interesting; (no installation > 20 km offshore now)

- Relatively mature technology, not much impacted by chemical sciences
- Intermittent source; storage system could assist in converting to base load power
- Distribution system not now suitable for balancing sources vs. end use demand sites
- Inherently produces electricity, not heat; perhaps cheapest stored using compressed air (\$0.01 kW-hr)

Global: Top Down

- Requires Large Areas Because Inefficient (0.3%)
- 3 TW requires ≈ 600 million hectares = 6×10^{12} m²
- 20 TW requires $\approx 4x10^{13} \text{ m}^2$
- Total land area of earth: $1.3 \times 10^{14} \text{ m}^2$
- Hence requires 4/13 = 31% of total land area

Biomass Energy Potential

Auburn University

Global: Bottom Up

- Land with Crop Production Potential, 1990: 2.45x10¹³ m²
- \bullet Cultivated Land, 1990: 0.897 $x10^{13}\ m^2$
- Additional Land needed to support 9 billion people in 2050: 0.416x10¹³ m²
- Remaining land available for biomass energy: $1.28 \times 10^{13} \text{ m}^2$
- At 8.5-15 oven dry tonnes/hectare/year and 20 GJ higher heating value per dry tonne, energy potential is 7-12 TW
- Perhaps 5-7 TW by 2050 through biomass (recall: \$1.5-4/GJ)
- Possible/likely that this is water resource limited
- Challenges for chemists: cellulose to ethanol; ethanol fuel cells

Solar Energy Potential

- Theoretical: 1.2x10⁵ TW solar energy potential (1.76 x10⁵ TW striking Earth; 0.30 Global mean albedo)
 Energy in 1 hr of sunlight ↔ 14 TW for a year
 Practical: ≈ 600 TW solar energy potential
 - (50 TW 1500 TW depending on land fraction etc.; WEA 2000) Onshore electricity generation potential of ≈ 60 TW (10% conversion efficiency):
- Photosynthesis: 90 TW

- Roughly equal global energy use in each major sector: transportation, residential, transformation, industrial
- World market: 1.6 TW space heating; 0.3 TW hot water; 1.3 TW process heat (solar crop drying: ≈ 0.05 TW)
- Temporal mismatch between source and demand requires storage
- (Δ S) yields high heat production costs: (0.03-0.20)/kW-hr
- High-T solar thermal: currently lowest cost solar electric source (\$0.12-0.18/kW-hr); potential to be competitive with fossil energy in long term, but needs large areas in sunbelt
- Solar-to-electric efficiency >20% (research in thermochemical fuels: hydrogen, NH_3 , syn gas, metals)

- 1.2x10⁵ TW of solar energy potential globally
- Generating 2x10¹ TW with 10% efficient solar farms requires 2x10²/1.2x10⁵ = 0.16% of Globe = 8x10¹¹ m² (i.e., 8.8 % of U.S.A)
- Generating 1.2x10¹ TW (1998 Global Primary Power) requires 1.2x10²/1.2x10⁵= 0.10% of Globe = 5x10¹¹ m² (i.e., 5.5% of U.S.A.)

Solar Land Area Requirements

Auburn University

Space Research Institute

Solar Land Area Requirements

Auburn University

6 Boxes at 3.3 TW Each

Space Research Institute

- U.S. Land Area: 9.1x10¹² m² (incl. Alaska)
- Average Insolation: 200 W/m²
- 2000 U.S. Primary Power Consumption: 99 Quads=3.3 TW
- 1999 U.S. Electricity Consumption = 0.4 TW
- Hence:

 $3.3x10^{12}$ W/(2x10² W/m² x 10% Efficiency) = $1.6x10^{11}$ m² Requires $1.6x10^{11}$ m²/ $9.1x10^{12}$ m² = 1.7% of Land

Solar Electricity

Auburn University

•Production is Currently Capacity Limited (>100 MW mean power output manufactured in 2001)

•but, subsidized industry (Japan biggest market)

•High Growth

•*but*, off of a small base (0.01% of 1%)

Cost-favorable/competitive in off-grid installations
 but, cost structures up-front vs amortization of grid-lines disfavorable

•Demands a systems solution: Electricity, heat, storage

Converting the Sun's Radiation into Electricity – Two Main Pathways

Auburn University

Photovoltaics

Cells of semi-conductors absorb photons and directly convert them into electrical current.

Concentrating Solar Power

Mirrors focus solar radiation to heat fluids that are used to drive electric generators.

U.S. Solar Resources Significantly Outweigh Energy Use

- Currently, solar provides less than 0.1% of the electricity used in the U.S.
- For the U.S., a 100mi by 100-mi area in the Southwest could provide all of our electricity
- Covering less than 0.2% of the land on the earth with 10%efficient solar cells would provide twice the power used by the world.

Photovoltaic (PV) technologies

Auburn University

Commercial

Residential

 A Growing Source for Distributed & Centralized Electricity Generation

Utility-scale

Space Research Institute

Historical PV Cost Curve (Silicon-based Technologies)

- Government investment in solar R&D has had a significant impact
- System prices must come down another 50-70% to achieve gridparity nationwide

* System price is dependent upon location, application and variable financing options (Source: NREL)

Space Research Institute

PV Growing Rapidly in Key Countries

Auburn University

- Grid-connected PV is fastest growing market
- Incentives have driven steep growth in installations
- Average annual global growth rate has been 40+% for the past 5 years
- PV could capture > 30% of market share for new capacity additions within next 5-10 years

Space Research Institute Source: International Energy Agency (2006)

Carbon Intensity vs GDP

Ref: Nate Lewis, 2005

SPACE RESEARCH INSTITUTE

×

Space Research Institute

US Energy Flow -1999 Net Primary Resource Consumption, 102 Exajoules

Auburn University

*Biomass/other includes wood and waste, geothermal, solar, and wind.

5th International Energy Conversion Engineering Conference, June 25-27, 2007

Ref: Nate Lewis, 2005 Space Research Institute

Currently end use well-matched to physical properties of resources

Ref: Nate Lewis, 2005 Space Research Institute

If deplete oil (or national security issue for oil), then liquefy gas, coal

Ref: Nate Lewis, 2005 Space Research Institute

Ref: Nate Lewis, 2005 Space Research Institute

H₂O

Semiconductor/Liquid

Space Research Institute

H₂O

02

Photosynthesis

Junctions International Energy Conversion Engineering Conference, June 25-27, 2007

Photovoltaics

Plus water for electrolysis

- Need for Additional Primary Energy is Apparent
- Case for Significant (Daunting?) Carbon-Free Energy Seems Plausible

Scientific/Technological Challenges

• Provide Disruptive Solar Technology: Cheap Solar Fuel

Inexpensive conversion systems, effective storage systems

• Provide the New Chemistry to Support an Evolving Mix in Fuels for Primary and Secondary Energy

Policy Challenges

• Will there be the needed commitment? Is Failure an Option?