STRETCHED LENS ARRAY SQUARERIGGER (SLASR): A UNIQUE NEW TECHNOLOGY FOR SPACE POWER

Henry W. Brandhorst, Jr. Space Research Institute, 231 Leach Center Auburn University, AL 36849-5320

Mark J. O'Neill and A.J. McDanal ENTECH, Inc., 1077 Chisolm Trail Keller, TX 76248 Michael I. Eskenazi ATK – Space Systems Goleta, CA 93117

Michael F. Piszczor NASA – Glenn Research Center Cleveland OH 44135

ABSTRACT: A unique solar array technology known as Stretched Lens Array SquareRigger (SLASR) has been developed, refined, and matured. SLASR offers an unprecedented portfolio of state-of-the-art performance metrics, including areal power density, specific power, stowed power density, high-voltage capability, radiation hardness, modularity, scalability, mass-producibility, and cost-effectiveness. SLASR is particularly well suited to high-power space missions, including solar electric propulsion (SEP) space tugs, major exploration missions to the Moon and Mars, and power-intensive military spacecraft. SLASR is also very well suited to high-radiation missions, since the cell shielding mass penalty is 85% less for the SLASR concentrator array than for one-sun planar arrays. This paper describes SLASR technology and presents significant results of developments to date in a number of key areas, from advances in the key components to full-scale array hardware fabrication and evaluation. A summary of SLASR's unprecedented performance metrics, both near-term and longer term, are presented. Plans for future SLASR developments and near-term space applications are also outlined.

Keywords: space, concentrators, PV array

1 INTRODUCTION AND BACKGROUND

ENTECH, NASA, and other team members have been developing refractive photovoltaic concentrator systems for producing space power from sunlight since the middle 1980's [1]. The first such technology developed and successfully flown in space was the pointfocus mini-dome lens array, shown in Fig. 1. This array used mechanically stacked GaAs/GaSb cells from Boeing in the focal point of ENTECH's silicone mini-dome Fresnel lens concentrators. The lenses were coated with a multi-layer oxide coating to protect the silicone lens material from solar ultraviolet (UV) radiation and monatomic oxygen (AO). The mini-dome lens array in Fig. 1 flew in 1994-95 on the NASA/USAF year-long PASP-Plus flight test in a very high-radiation elliptical orbit (363 km by 2,550 km at 70-degree inclination). Of the 12 advanced photovoltaic array types included on PASP-Plus, the mini-dome lens provided the highest performance and the least degradation [2].

Figure 1: Mini-dome lens array for PASP-Plus flight

After minithe lens dome array ENTECH, success. NASA, and other team members next developed the linefocus arched lens array, which evolved into the SCARLET array that performed flawlessly for the full thirty-eight-

month mission on NASA's Deep Space 1 probe, shown in Fig. 2. "SCARLET" (acronym for Solar Concentrator Array using Refractive Linear Element Technology) used silicone Fresnel lens material made by 3M using a high-speed continuous process. ENTECH laminated this silicone lens material to 75-micron-thick ceria-doped

glass arches, which provided support and UV protection for the lenses. Monolithic triple-junction (GaInP/GaAs/Ge) cells were placed in the focal lines of

the SCARLET lenses. The SCARLET array powered both the spacecraft and the ion engine on Deep Space 1 and performed as predicted on this highly successful mission [3].

Figure 2: SCARLET array on NASA/JP Deep Space 1 probe (1998-2001).

Shortly after the SCARLET array delivery, ENTECH discovered a simpler approach to deploy and support the line-focus silicone lenses, thereby eliminating the fragile, bulky, and expensive glass arches used on SCARLET.

The new approach uses simple lengthwise tensioning of the lens material between end arches for lens deployment and support on orbit, as shown in Fig. 3. Called the Stretched Lens Array (SLA), the new ultralight concentrator array also enables a very compact

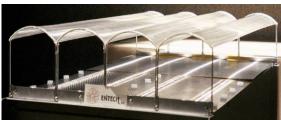


Figure 3: Stretched Lens Array (SLA) prototype.

stowage volume for launch [4]. SLA is compatible with a variety of space array platforms, from small unfolding rigid-panel wings to large deployable flexible-blanket

wings. Of all the platforms evaluated for SLA to date, the lightest and most compact is ATK Space Systems' SquareRigger. Originally developed for the Air Force Research Lab as a platform for thin-film solar cell arrays in space, SquareRigger is an even better match for the high-efficiency, ultra-light SLA technology [5].

2 STRETCHED LENS ARRAY SQUARERIGGER (SLASR) TECHNOLOGY

SLASR offers an amazingly compact stowed volume and an extremely light-weight deployed platform for the flexible-blanket version of SLA for high-power space missions.

2.1 SLASR Deployment

For launch, SLASR's carbon composite structural tubes stow in a very compact volume, with the two folded and interleaved blankets of lenses and radiator sheets (containing the solar cell circuits) nested between the tubes. On orbit, the tubes automatically deploy to form rectangular "bay" structures, each about 2.5 m x 5.0 m in size. After the bay tubular frame structure deploys and locks, the lens and radiator blankets are automatically pulled across the frame to form the deployed solar array.

Recently, a full-scale SLASR bay has been fabricated and successfully deployed. Fig. 4 shows the two-minute

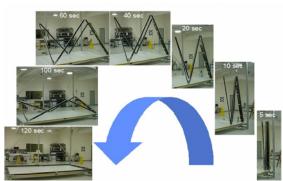


Figure 4: SLASR deployment

deployment sequence for the frame structure. Fig. 5 shows the 15-minute deployment sequence for the lens and radiator blankets. A single motor is used to provide both deployments (frame and blankets). The deployment was done in room conditions and was partially populated with lenses and cells. Fig. 6 shows a front view of the deployed bay. The deployed bay is 2.5 x 5 m in size.

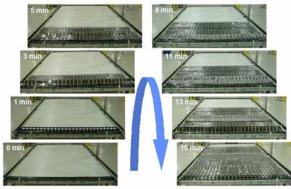


Figure 5: SLASR lens and radiator deployment

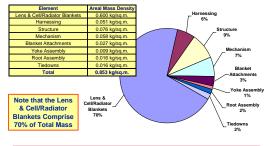
2.2 Power level

Multiple bays of the 2.5 m x 5.0 m size shown in Fig. 6 are employed to form large solar array wings for high-power space missions. Since each bay provides about

4 kW of power on orbit, two 12-bay wings provide will about 100 kW on orbit. For this 100 kW point design, Fig. 7 shows the mass breakdown. The lens and radiator blankets comprise about 70% of the total wing-level mass, which corresponds to only 0.85 g/m^2 for this array size.

Figure 6: SLASR fully deployed

3 SLASR COMPONENT IMPROVEMENTS


Over the past 18 months, SLASR technology maturation work included the development of several improved key components. Two of these improved components are:

- Protective coating for the silicone stretched lens that is mission-tailorable in thickness (0.2-5.0 microns)
- Integral-diode high-efficiency multi-junction photovoltaic cell (optimized for 8 suns irradiance)

3.1 Silicone lens protective coating

The new lens coating work is based on the latest thin protective coating from Ion Beam Optics. This coating very effectively blocks vacuum ultraviolet (VUV) wavelengths in space sunlight from reaching and possibly damaging the silicone lens material beneath the coating, as shown in Fig. 8.

The two graphs shown in Fig. 8 present the spectral

This mass breakdown is for a near-term 100 kW SLASR with today's 30% efficient cells and today's lens and radiator thicknesses

Figure 7: Mass breakdown for a 100 kW SLASR array

transmittance of coated silicone samples before and after 1,067 hours of simulated space UV exposure and 4 years of actual space UV exposure on the International Space

Station. The thin lens coating will provide adequate lens protection for many missions (e.g., LEO, GEO, or Deep Space).

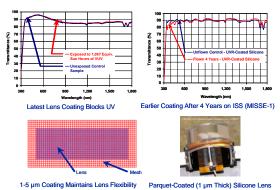


Figure 8: Mission-tailorable, thick parquet lens coating

For very high radiation missions, (e.g., belt flyers or space tugs flying between LEO and lunar orbit), a thicker coating would be desirable to reduce the charged particle radiation dose reaching the silicone lens. Dose-depth profile calculations show that a coating thickness up to 5 microns could be suitable for such missions. However, such a thick coating will be relatively rigid, making it seemingly incompatible with the stretched lens approach. However, by using a parquet approach to the coating application, the thick coating can be separated into small regions, allowing the lens as a whole to remain flexible enough to stow and deploy as a stretched lens. The new process provides patterned parquet geometry, as shown in Fig. 8. The SLA module demonstrated predicted performance for a 1-micron-thick parquet coating on a stretched lens focusing onto a triple-junction solar cell, showing the practicality of the new process.

3.2 Integral diode, high efficiency multi-junction solar

Under previous Stretched Lens Array (SLA) development programs, the photovoltaic receiver used discrete bypass diodes to protect the multi-junction cells from reverse-bias damage. These discrete diodes were relatively large, and were positioned alongside the solar cells, making the overall circuit about 2.0 cm wide, although the cells were only 1.2 cm wide, including bus bars. The whole photovoltaic circuit (cells and diodes) must be well insulated, both above and below the circuit, to operate reliably at high voltage in space. To reduce the mass and complexity of the SLASR photovoltaic receiver, EMCORE has developed an integral-diode concentrator cell as shown in Fig. 9.

To increase reliability and to minimize diode temperature excursions under bypass operation, redundant diodes are being used on the new cell. Two end tabs will be used to connect the back of the neighboring cell to both top bus bars of the SLASR concentrator cell, as well as closing the circuit between the tops of the diodes and the bus bars on the SLASR concentrator cell. The total photovoltaic receiver width is about 40% narrower for this approach than for prior SLA receiver approaches, reducing mass proportionally. New cells have been produced by EMCORE, as shown in the photo in Fig. 9. While these new cells have not yet been fully evaluated at 8 suns, the one-sun data indicate that

the new integral-diode cells should match earlier SLA cells with over 30% efficiency at 8 AM0 suns and 25 °C.

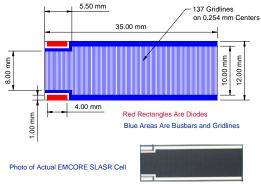


Figure 9: New, integral diode, concentrator cell

4 SLASR PERFOMANCE METRICS

The key near-term performance parameters and system-level metrics for SLASR are summarized in Table 1, which also shows the basis for each value. The bottom-line areal power density, specific power, and stowed power are all unprecedented values, well above the current state of the art for space solar arrays of any

Table 1: Key SLASR near term performance parameters

Table 1: Key SLASK near term performance parameters		
Parameter	Value for SLASR	Measurement or Model
Lens Transmittance	92%	Measurement
Cell Efficiency @25C	30%	Measurement
Net Lens/Cell Efficiency @25C	27.6%	Measurement (NASA Lear Jet Confirmed)
Cell Temperature on GEO	71C	Model (Validated on SCARLET)
Cell Temperature Knockdown Factor	91%	Measurement (Cell Temperature Coefficients)
Input Irradiance to SLA Lens	1,366 W/sq.m.	Measurement (International Standard)
SLA SquareRigger Gross Areal Power Density	343 W/sq.m.	Model
Wiring/Mismatch/Packing Knockdown Factor	90%	Model
SLA SquareRigger Net Areal Power Density	309 W/sq.m.	Model
SLA SquareRigger Wing Mass Density	0.853 kg/sq.m.	Model (Based on Prototype)
SLA SquareRigger Net Specific Power	362 W/kg	Model
SLA SquareRigger Stowed Power Density	80 kW/cu.m.	Model (Based on Prototype)

kind. Within the next five years, we anticipate major improvements in cell efficiency (to 38% at 8 AM0 suns and 25 °C), areal power density (to 400 W/m²), specific power (to 500 W/kg), and stowed power density (to 120 kW/m³). These gains are due primarily to the present-day rapid increases in cell efficiency, and secondarily to slight reductions in cell and radiator thickness and mass.

5 SLASR FUTURE PLANS AND APPLICATIONS

With its unique portfolio of performance metrics, SLASR offers substantial advantages over other space (and near-space) power systems for many future missions. A selection of applicable missions is shown in Fig. 10. For missions requiring extreme radiation hardness (e.g., national security space assets, belt flyers,

reusable space tugs, etc.), SLASR's small mass penalty for super-shielded cells could be mission-enabling. For missions requiring extremely low mass (e.g., lunar surface power, high-altitude airships, etc.), SLASR's unprecedented specific power could be mission-enabling.

For solar electric propulsion (SEP) missions, SLASR's high areal power density is critical to minimize residual atmospheric drag, SLASR's high specific power is critical to minimize parasitic mass, SLASR's radiation hardness is critical to withstand several slow spiraling transits through the radiation belts, and SLASR's high-voltage capability is critical to enable direct drive of the electric thrusters.

Recently, a version of SLASR has even been developed to work without sunlight. This new SLASR version collects and converts beamed infrared laser light to electrical power with spectacular performance metrics Prototypes of the laser version of SLASR have already demonstrated net conversion efficiencies above 45% at room temperature, with expected near-term improvement to over 55%. Performance metrics for the laser version of SLASR are outstanding, including over 800 W/kg specific power [6]. One important application of the laser version of SLASR is for powering exploration and resource extraction missions in the eternally dark lunar polar craters, which are known to contain hydrogen and oxygen. Such an application could use the solar version of SLASR to power the lasers on eternally sunny crater rims and the laser version of SLASR to convert the beamed laser light to useful

6 SUMMARY

A new photovoltaic concentrator technology for space power has been developed with outstanding performance metrics for many classes of missions for NASA, DOD, and commercial customers. The new array is the Stretched Lens Array SquareRigger (SLASR). Over the past three years, all of the key elements of SLASR have been developed and successfully tested, including the protectively coated lenses, the multijunction photovoltaic cells with integral bypass diodes, and the fully encapsulated photovoltaic receiver circuits. In addition, the carbon-fiber-fabric composite sheet radiator, the SquareRigger deployment and support platform, and the flexible blankets of stretched lens and cell/radiator elements have been demonstrated. With its unprecedented portfolio of performance metrics, SLASR technology is firmly based on flight-proven predecessor technologies, including the SCARLET array on Deep Space 1 and the earlier mini-dome lens array on PASP-Plus. With the new flight demonstrator package, this technology can also be demonstrated in additional orbits of interest. These tests will demonstrate SLASR's technology readiness for flight in a broad range of mission categories.

7 ACKNOWLEDGEMENTS

The authors gratefully acknowledge NASA's support of the work presented in this paper.

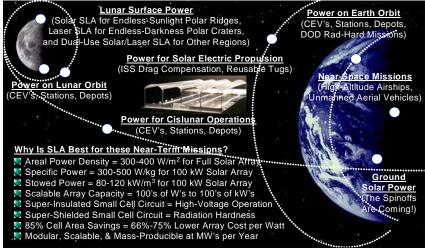


Figure 10: SLASR near-term applications in the Earth-Moon neighborhood

electrical power. Optionally, the laser beams could come from orbiting satellites.

Future plans for SLASR include a near-term flight test to validate the predicted performance metrics. The flight experiment will be developed and fabricated to demonstrate both Stretched Lens Array technology performance and the performance of emerging crystalline and thin film cell technologies. It will be self-powered and self-deploying and has minimal interface with the host vehicle. Packaged area is on the order of 900 cm². Other plans include further development of SLASR-powered solar electric propulsion (SEP) systems.

8 REFERENCES

[1] Piszczor, M.F. and O'Neill, M.J., "Development of a Dome Fresnel Lens/GaAs Photovoltaic Concentrator for Space Applications," 19th IEEE Photovoltaic Specialists Conference (PVSC), New Orleans, 1987.

[2] Curtis, H. and Marvin, D.,

"Final Results from the PASP Plus Flight Experiment," IEEE PVSC, Washington, 1996. "The [3] Murphy, D.M.. **SCARLET** Solar Arrav: Technology Validation and Flight Results," Deep Space Technology Validation Symposium, Pasadena, 2000.

[4] O'Neill, M.J., et al., "Development of the Ultra-Light Stretched Lens Array," 29th IEEE PVSC, New Orleans, 2002.

[5] O'Neill, M.J. et al., "Stretched Lens Array SquareRigger (SLASR) Technology Maturation," 19th Space Photovoltaic Research and Technology (SPRAT) Conference, Cleveland, 2005.

[6] O'Neill, M.J., et al., "Stretched Lens Array (SLA) for Collection and Conversion of Infrared Laser Light: 45% Efficiency Demonstrated for Near-Term 800 W/kg Space Power System," 4th World Conference on Photovoltaic Energy Conversion (WCPEC), Waikoloa, Hawaii, 2006.